
2020-10-02

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dietl, Ph.D.

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

 Some rights reserved.

Memory leaks

2
Memory leaks

Outline

• In this lesson, we will:

– Learn about memory leaks

– See that memory leaks will

• Reduce performance in application programming

• Cause serious issues in embedded programming

– See examples of how memory leaks can occur

– Consider three rules for avoiding memory leaks

3
Memory leaks

Dynamically memory allocation

• We have discussed dynamic memory allocation

– The operating system returns an address of allocated memory

• Suppose you have a friend, and that person give you that person’s
phone number

– As long as you have that number, you can contact them

– If you lose it, you can no longer contact that person

• With dynamically allocated memory, it is the same problem

4
Memory leaks

Memory leaks

• Suppose you dynamically allocate memory

– If you lose the address, you can no longer deallocate that memory

– You can’t use it, either…

• For short programs, this isn’t a critical issue:

– When the program exits,
 all dynamically allocated memory is reclaimed

• Suppose, however, in an embedded system, a request for 64 bytes is
made once per hour

– If that memory is not deallocated, over many days,
 the operating system will finally run out of available memory

– If you’re lucky, the system reboots;
 if not, the system becomes unusable

2020-10-02

2

5
Memory leaks

Losing scope

• Memory leaks occur if all pointers go out of scope:

int f(parameters...) {

 double *a_data{ new double[10]{} };

 // Do something with the allocated memory

 return return-value;

}

If the memory is only required in this function,
 call delete[] on it

If the memory is required elsewhere,
 return the address or store that address elsewhere

6
Memory leaks

Losing scope

• Sometimes it may be more subtle:

int f(parameters...) {

 double *a_data{new double[10]{}};

 while (condition) {

 // Do something with the allocated memory

 if (another-condition) {

 return return-value; // memory not deallocated

 }

 }

 delete[] a_data;

 return return-value;

}

7
Memory leaks

Losing scope

• Some programming guidelines require only one return per function
specifically to avoid this—cleanup happens once ans is guaranteed

int f(parameters...) {

 bool finished{ false };

 double *a_data{new double[10]{}};

 while (condition && !finished) {

 // Do something with the allocated memory

 if (another-condition) {

 finished = true;

 }

 }

 delete[] a_data;

 return return-value;

}

8
Memory leaks

Assignment

• Memory leaks occur if pointers are overwritten without the memory
first being deallocated

int f(parameters...) {

 int *a_data{new int[10]};

 // Do something with the allocated memory

 if (some-condition) {

 // We need a larger array

 a_data = new int[20];

 }

 delete[] a_data;

 return return-value;

}

2020-10-02

3

9
Memory leaks

Assignment

• Solution: deallocate the memory first before assigning it again x x x x x
x x

int f(parameters...) {

 int *a_data_array{new int[10]};

 // Do something with the allocated memory

 if (some-condition) {

 // Deallocate first, then assign new memory

 delete[] a_data_array;

 a_data_array = new int[20];

 }

 delete[] a_data_array;

 return return-value;

}

It is always okay to call delete on the nullptr
 – Nothing happens…

10
Memory leaks

Premature allocation

• Suppose an algorithm needs an arrayx x
double calculate_distance(int m, int n, std::size_t cap) {

 double distance{0.0};

 double *a_distance{new double[cap]};

 if (m == n) {

 distance = 0.0;

 } else {

 // calculate 'distance' using 'a_distance' as a

 // temporary array

 delete[] a_distance;

 a_distance = nullptr;

 }

 // Use 'distance' in some future calculation...

 return distance;

}

11
Memory leaks

Premature allocation

• Instead, declare and initialize only when the array is needed
double calculate_distance(int m, int n, std::size_t cap) {

 double distance{0.0};

 if (m == n) {

 distance = 0.0;

 } else {

 int *a_distance{new int[cap]};

 // calculate 'distance' using 'a_distance_array' as a

 // temporary array

 delete[] a_distance;

 a_distance = nullptr;

 }

 // Use 'distance' in some future calculation...

 return distance;

}

12
Memory leaks

Tips to avoid memory leaks

• Some tips for avoiding memory leaks:

– Try to allocate memory only during initialization

– Check pointers before they leave scope

• All pointers should either be

– Return values or

– Deallocated and set to 'nullptr'

– Pointers should only be defined in the smallest necessary scope

2020-10-02

4

13
Memory leaks

Restrict allocation to initialization

• Try to restrict allocation to initialization

– If possibly, only allocate when a variable is being initialized

double *function_name(parameters…) {

 // do not declare a_int here

 while (condition) {

 int *p_int{new int{some_value}};

 // Do something with 'p_int'

 delete p_int;

 p_int = nullptr;

 // Do something else...

 assert(p_int == nullptr);

 }

}

14
Memory leaks

Check pointers before they leave scope

• Avoiding memory leaks requires rigorous control on the assignment:

– After deleting a pointer, set the value to nullptr

– At the end of a function,
 either all pointers should be nullptr or returned

double *function_name(parameters…) {

 int *p_int1{new int{42}};

 int *p_int2{ p_int };

 int *a_return_value{new double[10]};

 // Do something...

 // - at some point you must delete 'p_int1' and

 // assign it the value 'nullptr'

 assert(p_int1 == nullptr);

 assert(p_int2 == nullptr);

 return a_return_value;

}

15
Memory leaks

Use the smallest possible scope

• Use the smallest scope necessary

– If you only need a pointer in a block,
 don’t declare it outside that block

double *function_name(parameters…) {

 // Do not declare 'a_vec' here...

 while (condition) {

 // Do something...

 if (special-condition) {

 double *a_vec{new double[3]};

 // Use 'a_vec' and at some point, delete[] it

 // and set 'a_vec' to nullptr...

 assert(a_vec == nullptr);

 }

 }

}

16
Memory leaks

Summary

• Following this lesson, you now

– Understand dynamic memory allocation can result in leaks

– Know that leaks are critically dangerous in embedded systems

– Know you must ensure you track the address and deallocate the
memory when it is finished

– Understand that you should

• Restrict allocation to initialization

• Check pointers before they go out of scope

• Restrict pointers to the smallest possible scope

2020-10-02

5

17
Memory leaks

References

[1] https://en.wikipedia.org/wiki/Memory_leak

18
Memory leaks

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

19
Memory leaks

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

